Multi-Step Ahead Estimation of Time Series Models
نویسندگان
چکیده
We study the fitting of time series models via minimization of a multi-step ahead forecast error criterion that is based on the asymptotic average of squared forecast errors. As in Haywood and Tunnicliffe-Wilson (1997) our score function is formulated in the frequency domain, but our time series models are not limited to those with spectra linear in the parameters; our formulation includes all linear processes. Moreover, the variables of our objective function are identical with the model parameters, which improves the interpretability of results. Asymptotic normality of parameter estimates is derived, enabling comparison to the classical one-step ahead formulation. In particular, parameter estimates are consistent under a correct model specification. 1 Statistical Research Division, U.S. Census Bureau, 4600 Silver Hill Road, Washington, D.C. 20233-9100 2 Institute of Data Analysis and Process Design
منابع مشابه
The Stock Returns Volatility based on the GARCH (1,1) Model: The Superiority of the Truncated Standard Normal Distribution in Forecasting Volatility
I n this paper, we specify that the GARCH(1,1) model has strong forecasting volatility and its usage under the truncated standard normal distribution (TSND) is more suitable than when it is under the normal and student-t distributions. On the contrary, no comparison was tried between the forecasting performance of volatility of the daily return series using the multi-step ahead forec...
متن کاملON THE STATIONARY PROBABILITY DENSITY FUNCTION OF BILINEAR TIME SERIES MODELS: A NUMERICAL APPROACH
In this paper, we show that the Chapman-Kolmogorov formula could be used as a recursive formula for computing the m-step-ahead conditional density of a Markov bilinear model. The stationary marginal probability density function of the model may be approximated by the m-step-ahead conditional density for sufficiently large m.
متن کاملPresenting a model for Multiple-step-ahead-Forecasting of volatility and Conditional Value at Risk in fossil energy markets
Fossil energy markets have always been known as strategic and important markets. They have a significant impact on the macro economy and financial markets of the world. The nature of these markets are accompanied by sudden shocks and volatility in the prices. Therefore, they must be controlled and forecasted by using appropriate tools. This paper adopts the Generalized Auto Regressive Condition...
متن کاملMulti-Step-Ahead Prediction of Stock Price Using a New Architecture of Neural Networks
Modelling and forecasting Stock market is a challenging task for economists and engineers since it has a dynamic structure and nonlinear characteristic. This nonlinearity affects the efficiency of the price characteristics. Using an Artificial Neural Network (ANN) is a proper way to model this nonlinearity and it has been used successfully in one-step-ahead and multi-step-ahead prediction of di...
متن کاملFunctional Coefficient Regression Models for Nonlinear Time Series: A Polynomial Spline Approach
We propose a global smoothing method based on polynomial splines for the estimation of functional coefficient regression models for nonlinear time series. Consistency and rate of convergence results are given to support the proposed estimation method. Methods for automatic selection of the threshold variable and significant variables (or lags) are discussed. The estimated model is used to produ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010